JUNOScript Session Control

This chapter explains how to start and terminate a session with the JUNOScript server, and
describes the Extensible Markup Language (XML) tags that client applications and the
JUNOScript server use to coordinate information exchange during the session. It discusses
the following topics:

General JUNOScript Conventions on page 9

Start, Control, and End a JUNOScript Session on page 14

Handle an Error Condition on page 30

Halt a Request on page 30

Display CLI Output as JUNOScript Tags on page 31

Example of a JUNOScript Session on page 31

General JUNOScript Conventions

A client application must comply with XML and JUNOScript conventions. Compliant
applications are easier to maintain if the JUNOS Internet software or the JUNOScript
application programming interface (API) changes. The JUNOScript server always obeys the
conventions. The following sections describe JUNOScript conventions:

Ordering and Context for Session Control Tags on page 10

Ordering and Context for Request and Response Tags on page 10

Ordering and Context for a Request Tag’s Child Tags on page 11

Ordering and Context for a Response Tag’s Child Tags on page 11

Spaces, Newlines, and Other White Space Characters on page 11

Comments on page 12

XML Processing Instructions on page 12

Predefined Entity References on page 12

JUNOScript Session Control e

Gener al JUNOScript Conv entions

Ordering and Context for Session Control Tags

A session contr ol tag is one that delimits the parts of a JUNOScript session. There are tags
that indicate the start or end of a session, identify a client request or server response, and
signal error conditions. Most session control tags can occur only in certain contexts and in a
prescribed order. JUNOScript session controllers include the following:

<?xml?>—An XML processing instruction (PI), emitted by both the client application
and the JUNOScript server as they establish a JUNOScript session. For more information
about Pls, see “XML Processing Instructions” on page 12.

<junoscript>—The root tag for every JUNOScript session, emitted by both the client
application and the JUNOScript server as they establish and close the session.

<rpc>—The container tag that encloses each request emitted by the client application. It
can occur only within <junoscript> tags.

<rpc-reply>—The container tag that encloses each response returned by the JUNOScript
server. It can occur only within <junoscript> tags.

For more information about how to use these tags, see “Start, Control, and End a JUNOScript
Session” on page 14 and the summary of session control tags in the JUNOScript API
Reference.

Ordering and Context for Request and Response Tags

@ JUNOScript 5.4 API Guide

A request tag is one generated by a client application to request information about a router’s
current status or configuration or to change the configuration. A request tag corresponds to a
JUNOS command-line interface (CLI) operational command or configuration statement. It
can occur only within <rpc> session control tags.

A response tag represents the JUNOScript server’s reply to a request tag and occurs only
within <rpc-reply> tags.

The following example represents an exchange in which a client application emits the
<get-interface-information> request tag with the <extensive/> flag and the JUNOScript server
returns the <interface-information> response tag. (For information about the xmins attribute,
see “JUNOScript Server Response Classes” on page 27.)

Client Application JUNOScript Server
<rpc>
<get-interface-information>
<extensive/>
</get-interface-information>
</rpc>
<rpc-reply>
<interface-information xmins="URL">
<I- - child tags of the <interface-information> tag - ->
</interface-information>
</rpc-reply>

T1000

General JUNOScript Conventions

A client application can send only one request tag at a time to a particular
router, and must not send another request tag until it receives the closing
</rpc-reply> tag that represents the end of the JUNOScript server’s response

to the current request.
Note

Ordering and Context for a Request Tag’s Child Tags

Some request tags contain child tags. For configuration request tags, each child tag represents
a level in the JUNOS configuration hierarchy. For operational request tags, each child tag
represents one of the options you provide on the command line when issuing the equivalent
CLI command.

Some request tags require that certain child tags be present. To make a request successfully,
a client application must emit the required child tags within the request tag’s opening and
closing tags. If any of the request tag’s children are themselves container tags, the opening
tag for each must occur before any of the tags it contains, and the closing tag must occur
before the opening tag for another tag element at its hierarchy level.

In most cases, the ordering of child tags at one hierarchy level within a request tag is not
significant. The important exception is the identifier tag for an element, which distinguishes
the element from other elements of its type. It must occur first within the container tag that
represents the element. Most often the identifier tag specifies the element name and is called
<name>. For more information, see “Tag Mappings for Identifiers” on page 42.

Ordering and Context for a Response Tag’s Child Tags

A response tag’s child tags represent the individual data items returned by the JUNOScript
server for a particular request. At one hierarchy level within a response tag, there is no
prescribed order for the child tags, and the set of child tags is subject to change in later
releases of the JUNOScript API. Client applications must not rely on the presence or absence
of a particular tag in the JUNOScript server’s output, nor on the ordering of child tags within
a response tag. For the most robust operation, include logic in the client application that
handles the absence of expected tags or the presence of unexpected ones as gracefully as
possible.

Spaces, Newlines, and Other White Space Characters

The JUNOScript APl complies with the XML specification in ignoring spaces, newlines, and
other characters that represent white space. Client applications must not depend on leading,
trailing, or embedded white space when parsing the tag stream emitted by the JUNOScript
server. For more information about white space in XML documents, see the XML
specification at http://www.w3.org/TR/REC-xml.

JUNOScript Session Control e

Gener al JUNOScript Conv entions

Comments

Comments can appear at any point in the tag stream emitted by the JUNOScript server.
Client applications must handle them gracefully but must not depend on their content. Client
applications also cannot use comments to convey information to the JUNOScript server,
because the server automatically discards any comments it receives.

Because the JUNOScript API is based on XML, comments are enclosed within the strings <!--
and -->, and cannot contain the string -- (two hyphens). For more details about comments,
see the XML specification at http://www.w3.org/TR/REC-xml.

The following is an example of an XML comment:

<l-- This is a comment. Please ignore it. -->

XML Processing Instructions

An XML PI contains information relevant to a particular protocol and has the following form:
<?Pl-name attributes?>

Some Pls emitted during a JUNOScript session include information that a client application
needs for correct operation. A prominent example is the <?xml?> tag, which the client
application and JUNOScript server each emit at the beginning of every JUNOScript session to
specify which version of XML and which character encoding scheme they are using. For
more information, see “Emit Initialization Pls and Tags” on page 21.

The JUNOScript server can also emit Pls that the client application does not need to interpret
(for example, Pls intended for the JUNOS CLI). If the client application does not understand a
Pl, it must treat the PI like a comment rather than exiting or generating an error message.

Predefined Entity References

@ JUNOScript 5.4 API Guide

By XML convention, there are two contexts in which certain characters cannot appear in
their regular form:

In the string that appears between the opening and closing parts of a tag element (the
value contained by the tag)

In the string value assigned to an attribute of an opening tag

When including a disallowed character in either context, client applications must substitute
the equivalent predefined entity reference, which is a string of characters that represents the
disallowed character. The JUNOScript server uses the same predefined entity references in its
response tags, so the client application must be able to convert them to actual characters
when processing response tags.

General JUNOScript Conventions

Table 2 summarizes the mapping between disallowed characters and predefined entity
references for strings that appear between the opening and closing tags of a tag element.

Table 2: Predefined Entity Reference Substitutions for Tag Content Values

Disallowed Character Predefined Entity Reference
& &

< <

> >

Table 3 summarizes the mapping between disallowed characters and predefined entity
references for attribute values.

Table 3: Predefined Entity Reference Substitutions for Attribute Values

Disallowed Character Predefined Entity Reference
& &
'
> >
< <
"

As an example, suppose that the following string is the value contained by the <condition>
tag:

if (a<b && b>c) return "Peer’s dead"
Using the required predefined entity references, the <condition> tag looks like this:
<condition>if (a<b && b>c) return “Peer’s dead"</condition>

Similarly, if the value for the <example> tag’s heading attribute is Peer’s "age" <> 40, the
opening tag looks like this when the required predefined entity references are used:

<example heading="Peer's "age" <> 40">

JUNOScript Session Control @

Start, Control, and End a JUNOScript Session

Start, Control, and End a JUNOScript Session

The JUNOScript server communicates with client applications within the context of a
JUNOScript session. The server and client explicitly establish a connection and session before
exchanging data, and close the session and connection when they are finished. The streams
of JUNOScript tags emitted by the JUNOScript server and a client application must each
constitute a well-formed XML document by obeying the structural rules defined in the
JUNOScript document type definition (DTD) for the kind of information they are exchanging.
The client application must emit tags in the required order and only in the allowed contexts.

Client applications access the JUNOScript server using one of the protocols listed in
“Supported Access Protocols” on page 14. To authenticate with the JUNOScript server, they
use either a JUNOScript-specific mechanism or the protocol’s standard authentication
mechanism, depending on the protocol. After authentication, the JUNOScript server uses the
JUNOS login accounts and classes already configured on the router to determine whether a
client application is authorized to make each request.

See the following sections for information about establishing, using, and terminating a
connection and JUNOScript session:

Supported Access Protocols on page 14
Prerequisites for Establishing a Connection on page 15
Connect to the JUNOScript Server on page 18
Start the JUNOScript Session on page 21
Exchange Tagged Data on page 25
End the Session and Close the Connection on page 29
For an example of a complete JUNOScript session, see “Example of a JUNOScript Session” on
page 31.
Supported Access Protocols
The JUNOScript server accepts connections created using the access protocols listed in

Table 4, which also specifies the associated authentication mechanism.

Table 4: Supported Access Protocols and Authentication Mechanisms

Access Protocol Authentication Mechanism
clear-text, a JUNOScript-specific protocol for sending unencrypted text over a JUNOScript-specific
Transmission Control Protocol (TCP) connection

ssh (secure shell) Standard ssh

SSL (Secure Sockets Layer) JUNOScript-specific

telnet Standard telnet

The SSL and ssh protocols are preferred because they encrypt security information (such as a
password) before transmitting it across the network. The clear-text and telnet protocols do
not encrypt security information.

@ JUNOScript 5.4 API Guide

Start, Control, and End a JUNOScript Session

For information about each protocol’s authentication prerequisites, see “Prerequisites for
Establishing a Connection” on page 15. For authentication instructions, see “Connect to the
JUNOScript Server” on page 18.

Prerequisites for Establishing a Connection

Both the JUNOScript server and the client application must be able to access the software for
the access protocol that the client application uses to create a connection. The JUNOScript
server can access the protocols listed in “Supported Access Protocols” on page 14, because
the JUNOS Internet software distribution includes them. On most operating systems, client
applications can access the software for TCP (used by the JUNOScript-specific clear-text
protocol) and the telnet protocol as part of the standard distribution. For information about
obtaining ssh software for use by a client application, see http://www.ssh.com and
http://www.openssh.com. For information about obtaining SSL software, see
http://www.openssl.org.

For information about connection prerequisites, see the following sections:
Prerequisites for clear-text Connections on page 15
Prerequisites for ssh Connections on page 16
Prerequisites for SSL Connections on page 16

Prerequisites for telnet Connections on page 17

Prerequisites for clear-text Connections

If the client application uses the clear-text protocol to send unencrypted text directly over a
TCP connection without using any additional protocol (such as ssh, SSL, or telnet), perform
the following procedure to activate the xnm-clear-text service on the JUNOScript server
machine. The service listens on port 3221:

1. Enter CLI configuration mode on the JUNOScript server machine and issue the following
command:

[edit]
user@host# activate system services xnm-clear-text

2. Commit the configuration:

[edit]
user@host# commit

JUNOScript Session Control e

Start, Control, and End a JUNOScript Session

Prerequisites for ssh Connections

The ssh protocol uses public-private key technology. The ssh client software must be installed
on the machine where the client application runs. If the ssh private key is encrypted (as is
recommended for greater security), the ssh client must be able to access the passphrase used
to decrypt the key.

If the client application uses the JUNOScript Perl module described in “Write a Perl Client
Application” on page 71, no further action is necessary. As part of the Perl module
installation procedure, you install a prerequisites package that includes the necessary ssh
software.

If the client application does not use the JUNOScript Perl module, perform the following
procedures to enable it to establish ssh connections:

1.

2.

Install the ssh client on the machine where the client application runs.

If the private key is encrypted (as recommended), use one of the following methods to
make the associated passphrase available to the ssh client:

Run the ssh-agent program to provide key management.
Direct the ssh client to the file on the local disk that stores the passphrase.

Include code in the client application that prompts a human user for the
passphrase.

Prerequisites for SSL Connections

@ JUNOScript 5.4 API Guide

The SSL protocol uses public-private key technology, which requires a paired private key and
authentication certificate. Perform the following procedure to enable a client application to
establish SSL connections:

1.

Install the SSL client on the machine where the client application runs.

(Skip this step if the client application uses the JUNOScript Perl module described in
“Write a Perl Client Application” on page 71. As part of the Perl module installation
procedure, you install a prerequisites package that includes the necessary SSL software.)

Obtain an authentication certificate in Privacy Enhanced Mail (PEM) format, in one of
two ways:

Request a certificate from a Certificate Authority; these agencies usually charge a
fee.

Issue the following openssl command to generate a self-signed certificate; for
information about obtaining the openssl software, see http://www.openssl.org.

The command writes the certificate and an unencrypted 1024-bit RSA private key
to the file called certificate-file.pem. The command appears here on two lines only
for legibility:

% openssl req -x509 -nodes -newkey rsa:1024 -keyout certificate-file.pem \
-out certificate-file.pem

Start, Control, and End a JUNOScript Session

3. Enter CLI configuration mode on the JUNOScript server machine and issue the following
commands to import the certificate. In the first command, substitute the desired
certificate name for the certificate-name variable. In the second command, for the
URL-or-path variable substitute the name of the file that contains the paired certificate
and private key, either as a URL or a pathname on the local disk:

[edit]
user@host# edit security certificates local certificate-name

[edit security certificates local certificate-name]
user@host# set load-key-file URL-or-path

The CLI expects the private key in the specified file (URL-or-path) to
be unencrypted. If the key is encrypted, the CLI prompts for the
passphrase associated with it, decrypts it, and stores the

unencrypted version.
Note ryp

4. Issue the following commands to activate the xnm-ssl service, which listens on port
3220. In the last command, substitute the same value for the certificate-name variable
as in Step 3:

[edit security certificates local certificate-name]
user@host# top

[edit]
user@host# edit system services

[edit system services]
user@host# activate xnm-ssl

[edit system services]
user@host# set xnm-ssl local-certificate certificate-name

5. Commit the configuration:

[edit system services]
user@host# commit

Prerequisites for telnet Connections
There are no prerequisites for enabling a client application to establish telnet connections,
other than ensuring that both the client application and the JUNOScript server can access the

telnet software. For a discussion, see “Prerequisites for Establishing a Connection” on
page 15.

JUNOScript Session Control @

Start, Control, and End a JUNOScript Session

Connect to the JUNOScript Server

A client application written in Perl can most efficiently establish a connection and open a
JUNOScript session by using the JUNOScript Perl module described in “Write a Perl Client
Application” on page 71. For more information, see that chapter.

For a client application that does not use the JUNOScript Perl module, first perform the

prerequisite procedures for the access protocol being used, as described in “Prerequisites for

Establishing a Connection” on page 15. The supported access protocols are listed in

“Supported Access Protocols” on page 14.

The client application must then perform the following steps:

1. Open a socket or other communications channel to the JUNOScript server machine
(router) by invoking one of the remote-connection routines appropriate for the
combination of programming language and access protocol that the application uses.

2. Provide authentication information as required by the access protocol:

If using the clear-text or SSL protocol, authenticate with the JUNOScript server. For
instructions, see “Authenticate with the JUNOScript Server” on page 19.

Note that you must already have activated the authentication software on the
JUNOScript server machine as specified in “Prerequisites for clear-text
Connections” on page 15 and “Prerequisites for SSL Connections” on page 16.
If using the ssh or telnet protocol, use the protocol’s built-in authentication
mechanism. Then issue the junoscript command to request that the JUNOScript
server convert the connection into a JUNOScript session. For a C-code example, see
“Write a C Client Application” on page 77.

3. Emit initialization tags as described in “Start the JUNOScript Session” on page 21.

For more information about authentication and establishing a connection, see the following
sections:

Authenticate with the JUNOScript Server on page 19

Connect to the JUNOScript Server from the CLI on page 20

@ JUNOScript 5.4 API Guide

Start, Control, and End a JUNOScript Session

Authenticate with the JUNOScript Server

A client application that uses the clear-text or SSL protocol must authenticate with the
JUNOScript server. The client application begins by emitting the <request-login> tag within
<rpc> tags. In the <request-login> tag, it encloses the <username> tag to specify the name of
the JUNOS user account under which to establish the connection. The account must already
exist on the JUNOScript server machine. The application can choose whether to specify the
password for the account as part of the current tag sequence:

To specify the password along with the JUNOS account name, emit the following tag
sequence:

<rpc>
<request-login>
<username>JUNOS-account</username>
<challenge-response>password</challenge-response>
</request-login>
</rpc>

This tag sequence is appropriate if the application automates access to router
information and does not interact with human users, or obtains the password from a
human user before beginning the authentication process.

To specify only the JUNOS account name, emit the following tag sequence:

<rpC>
<request-login>
<username>JUNOS-account</username>
</request-login>
</rpc>

This tag sequence is appropriate if the application does not obtain the password until the
authentication process has already begun. In this case, the JUNOScript server returns the
<challenge> tag within <rpc-reply> tags to request the password associated with the
account. The tag encloses the string Password: which the client application can forward
to the screen as a prompt for a human user. The echo attribute on the <challenge> tag is
set to the value no to specify that the password string typed by the user does not echo
on the screen. The tag sequence is as follows:

<rpc-reply>
<challenge echo="no">Password:</challenge>
</rpc-reply>

The client application obtains the password and emits the following tag sequence to
forward it to the JUNOScript server:

<|‘pC>
<request-login>
<username>JUNOS-account</username>
<challenge-response>password</challenge-response>
</request-login>
</rpc>

JUNOScript Session Control @

Start, Control, and End a JUNOScript Session

After it receives the account name and password, the JUNOScript server emits the
<authentication-response> tag to indicate whether the authentication attempt is successful:

If the password is correct, the authentication attempt succeeds and the JUNOScript
server emits the following tag sequence:

<rpc-reply>
<authentication-response>
<status>success</status>
<message>JUNOS-account</message>
</authentication-response>
</rpc-reply>

The JUNOS-account is the JUNOS account name under which the connection is
established. The JUNOScript session begins as described in “Start the JUNOScript
Session” on page 21.

If the password is not correct or the <request-login> tag stream is otherwise malformed,
the authentication attempt fails and the JUNOScript server emits the following tag
sequence:

<rpc-reply>
<authentication-response>
<status>fail</status>
<message>error-message</message>
</authentication-response>
</rpc-reply>

The error-message is a string explaining why the authentication attempt failed. The
JUNOScript server emits the <challenge> tag up to two more times before rejecting the
authentication attempt and closing the connection.

Connect to the JUNOScript Server from the CLI

@ JUNOScript 5.4 API Guide

The JUNOScript API is primarily intended for use by client applications, but for testing
purposes you can establish an interactive JUNOScript session and type commands in a shell
window. To connect to the JUNOScript server from JUNOS CLI operational mode, issue the
junoscript command:

cli> junoscript

To begin a JUNOScript session over the connection, emit the initialization tags described in
“Start the JUNOScript Session” on page 21. You can then type sequences of tags that
represent operational and configuration operations, as described in “Operational Requests”
on page 35 and “Router Configuration” on page 39. To eliminate typing errors, save
complete tag sequences in a file and use a cut-and-paste utility to copy the sequences to the
shell window.

When you close the connection to the JUNOScript server (for example, by
emitting the <request-end-session> and </junoscript> tags), the router
completely closes your connection instead of returning you to the CLI
operational mode prompt.
Note
Similarly, the JUNOScript server completely closes your connection if there
are any typographical or syntax errors in the tag sequence you enter.

Start, Control, and End a JUNOScript Session

Start the JUNOScript Session

Each JUNOScript session begins with a handshake in which the JUNOScript server and the
client application specify the versions of XML and the JUNOScript API they are using. Each
party parses the version information emitted by the other, using it to determine whether they
can communicate successfully. The following sections describe how to start a JUNOScript
session:

Emit Initialization Pls and Tags on page 21

Parse Initialization Tags from the JUNOScript Server on page 22

Verify Compatibility on page 24

Supported Protocol Versions on page 25

Emit Initialization Pls and Tags

When the JUNOScript session begins, the client application emits an <?xml?> Pl and an
opening <junoscript> tag, as described in the following sections.

Emit the <?xml?= PI
The client application begins by emitting an <?xml?> PI with the following syntax:
<?xml version="version" encoding="encoding"?>

The PI attributes are as follows. For a list of the attribute values that are acceptable in the
current version of the JUNOScript API, see “Supported Protocol Versions” on page 25.

version—The version of XML with which tags emitted by the client application comply

encoding—The standardized character set that the client application uses and can
understand

In the following example of a client application’s <?xml?> PI, the version="1.0" attribute
indicates that it is emitting tags that comply with the XML 1.0 specification. The
encoding="us-ascii" attribute indicates that the client application is using the 7-bit ASCII
character set standardized by the American National Standards Institute (ANSI). For more
information about ANSI standards, see http://www.ansi.org.

<?xml version="1.0" encoding="us-ascii"?>

Emit the Opening <<junoscript=T ag

The client application then emits its opening <junoscript> tag, which has the following
syntax:

<junoscript version="version" hostname="hostname" release="release-code">

JUNOScript Session Control @

Start, Control, and End a JUNOScript Session

The tag attributes are as follows. The version attribute is required, but the other attributes are
optional. For a list of the attribute values that are acceptable in the current version of the
JUNOScript API, see “Supported Protocol Versions” on page 25.

version—(Required) The version of the JUNOScript API that the client application is
using.

hostname—The name of the machine on which the client application is running. The
information is used only when diagnosing problems. The JUNOScript API does not
include support for establishing trusted-host relationships or otherwise altering
JUNOScript server behavior depending on the client hostname.

release—The identifier of the JUNOS Internet software release for which the client
application is designed. It indicates that the client application can interoperate
successfully with a JUNOScript server designed to understand that version of the JUNOS
Internet software. In other words, it indicates that the client application emits request
tags corresponding to supported features of the indicated JUNOS Internet software
version, and knows how to parse response tags that correspond to those features. If you
do not include this attribute, the JUNOScript server assumes that the client application
can interoperate with its version of the JUNOS Internet software. For more information,
see “Verify Compatibility” on page 24.

For release-code, use the standard notation for JUNOS Internet software version
numbers. For example, the value 5.3R1 represents the initial version of JUNOS
Release 5.3.

In the following example of a client application’s <junoscript> tag, the version="1.0"
attribute indicates that it is using JUNOScript version 1.0. The hostname="client1" attribute
indicates that the client application is running on the machine called clientl. The
release="5.3R1" attribute indicates that the router is running the initial version of JUNOS
Release 5.3.

<junoscript version="1.0" hostname="client1" release="5.3R1">

Parse Initialization Tags from the JUNOScript Server

When the JUNOScript session begins, the JUNOScript server emits an <?xml?> Pl and an
opening <junoscript> tag, as described in the following sections.

Parse the JUNOScript Serv er’s <<?xml?= PI

@ JUNOScript 5.4 API Guide

The syntax for the <?xml?> Pl is as follows:
<?xml version="version" encoding="encoding"?>

The PI attributes are as follows. For a list of the attribute values that are acceptable in the
current version of the JUNOScript API, see “Supported Protocol Versions” on page 25.

version—The version of XML with which tags emitted by the JUNOScript server comply

encoding—The standardized character set that the JUNOScript server uses and can
understand

Start, Control, and End a JUNOScript Session

In the following example of a JUNOScript server’s <?xml?> PI, the version="1.0" attribute
indicates that the server is emitting tags that comply with the XML 1.0 specification. The
encoding="us-ascii" attribute indicates that the server is using the 7-bit ASCII character set
standardized by ANSI. For more information about ANSI standards, see http://www.ansi.org.

<?xml version="1.0" encoding="us-ascii"'?>

Parse the JUNOScript Serv er’s Opening <<junoscript= T ag

The server then emits its opening <junoscript> tag, which has the following form (the tag
appears on multiple lines only for legibility):

<junoscript version="version" hostname="hostname" 0s="JUNOS" release="release-code"
xmIns="namespace-URL" xmIns:junos="namespace-URL"
xmIns:xnm="namespace-URL">

The tag attributes are as follows.
version—The version of the JUNOScript API that the JUNOScript server is using.
hostname—The name of the router on which the JUNOScript server is running.

0s—The operating system of the router on which the JUNOScript server is running. The
value is always JUNOS.

release—The identifier for the version of the JUNOS Internet software from which the
JUNOScript server is derived and is designed to understand. It is presumably in use on
the router where the JUNOScript server is running. The release-code uses the standard
notation for JUNOS Internet software version numbers. For example, the value 5.3R1
represents the initial version of JUNOS Release 5.3.

xmIns—The XML namespace for the tags enclosed by the <junoscript> tag that do not
have a prefix on their names (that is, the default namespace for JUNOScript tags). The
value is a URL of the form http://xml.juniper.net/xnm/version/xnm, where version is a
string such as 1.1.

xmins:junos—The XML namespace for the tags enclosed by the <junoscript> tag that
have the junos: prefix on their names. The value is a URL of the form
http://xml.juniper.net/junos/release-code/junos, where release-code is the standard
string that represents a release of the JUNOS software, such as 5.3R1 for the initial
release of version 5.3.

xmins:xnm—The XML namespace for the JUNOScript tags enclosed by the <junoscript>

tag that have the xnm: prefix on their names. The value is a URL of the form
http://xml.juniper.net/xnm/version/xnm, where version is a string such as 1.1.

JUNOScript Session Control e

Start, Control, and End a JUNOScript Session

Verify Compatibility

@ JUNOScript 5.4 API Guide

In the following example of a JUNOScript server’s opening <junoscript> tag, the version
attribute indicates that the server is using JUNOScript version 1.0 and the hostname attribute
indicates that the router’s name is big-router. The os and release attributes indicate that the
router is running the initial version of JUNOS Release 5.3. The xmIns and xmins:xnm
attributes indicate that the default namespace for JUNOScript tags and the namespace for
tags that have the xnm: prefix is http://xml.juniper.net/xnm/1.1/xnm. The xmIns:junos
attribute indicates that the namespace for tags that have the junos: prefix is
http://xml.juniper.net/junos/5.3R1/junos. The tag appears on multiple lines only for
legibility.

<junoscript version="1.0" hostname="big-router" os="JUNOS" release="5.3R1"
xmins="http://xml.juniper.net/xnm/1.1/xnm"
xmins:junos="http://xml.juniper.net/junos/5.3R1/junos"
xmins:xnm="http://xml.juniper.net/xnm/1.1/xnm">

Exchanging <?xml?> and <junoscript> tags enables a client application and the JUNOScript
server to determine if they are running different versions of a protocol. Different versions are
sometimes incompatible, and by JUNOScript convention the party running the later version
of a protocol determines how to handle any incompatibility. For fully automated
performance, include code in the client application that determines if its version of a protocol
is later than that of the JUNOScript server. Decide which of the following options is
appropriate when the application’s version of a protocol is more recent, and implement the
corresponding response:

Ignore the version difference, and do not alter standard behavior to accommodate the
JUNOScript server’s version. A version difference does not always imply incompatibility,
so this is often a valid response.

Alter standard behavior to provide backward compatibility to the JUNOScript server. If
the client application is running a later version of the JUNOS Internet software, for
example, it can choose to emit only tags that represent the software features available in
the JUNOScript server’s version of the JUNOS Internet software.

End the JUNOScript session and terminate the connection. This is appropriate if you
decide that accommodating the JUNOScript server’s version of a protocol is not
practical.

Supported Protocol Versions

Start, Control, and End a JUNOScript Session

Table 5 lists the protocol versions supported by version 1.0 of the JUNOScript APl and
specifies the Pl or tag and attribute used to specify the information during JUNOScript

session initialization.

Table 5: Supported Protocol Versions

Protocol and Versions Pl or Tag Attribute
XML 1.0 <?xml?> version="1.0"
ANSI-standardized 7-bit ASCII character set <?xml?> encoding="us-ascii"

JUNOScript 1.0

<junoscript>

version="1.0"

JUNOS Release 5.1
JUNOS Release 5.2
JUNOS Release 5.3
JUNOS Release 5.4

<junoscript>

release="5.1Rx"
release="5.2Rx"
release="5.3Rx"
release="5.4Rx"

Exchange Tagged Data

The session continues when the client application sends a request to the JUNOScript server.
The JUNOScript server does not emit any tags after session initialization, except in response
to the client application’s requests (or in the rare case that it needs to terminate the
JUNOScript session). The following sections describe the exchange of tagged data:

Send a Request to the JUNOScript Server on page 25

Parse the JUNOScript Server Response on page 27

Send a Request to the JUNOScript Server

To initiate a request to the JUNOScript server, emit the opening <rpc> tag, followed by the tag
or tags that represent a particular request, and the closing </rpc> tag, in that order. Enclose
each request in a separate pair of opening <rpc> and closing </rpc> tags. For an example of
emitting the <rpc> tag in the context of a complete JUNOScript session, see “Example of a

JUNOScript Session” on page 31.

See the following sections for further information:

JUNOScript Request Classes on page 26

Include Attributes in the Opening <<rpc= Tag on page 27

JUNOScript Session Control e

Start, Control, and End a JUNOScript Session

JUNOScript R equest Classes

There are two classes of JUNOScript requests:

@ JUNOScript 5.4 API Guide

Operational requests —Requests for information about router status, which correspond
to the JUNOS CLI commands listed in the JUNOS Internet Softw are Oper ational Mode
Command R eference. The JUNOScript API defines a specific request tag for many CLI
commands. For example, the <get-interface-information> tag corresponds to the

show interfaces command, and the <get-chassis-inventory> tag requests the same
information as the show chassis hardware command.

The following sample request is for detailed information about the interface called
ge-2/3/0:

<rpC>
<get-interface-information>
<interface-name>ge-2/3/0</interface-name>
<detail/>
</get-interface-information>
</rpc>

For more information about requesting operational information, see “Operational
Requests” on page 35. For a complete list of mappings between tags and CLI commands
for the current version of the JUNOScript API, see the JUNOScript API R eference.

Configur ation requests —Requests to change router configuration or for information
about the current configuration, either candidate or committed (the one currently in
active use on the router). The candidate and committed configurations diverge when
there are uncommitted changes to the candidate configuration.

Configuration requests correspond to the JUNOS CLI configuration statements described
in each of the JUNOS Internet software configuration guides. The JUNOScript API defines
a tag for every container and leaf statement in the JUNOS configuration hierarchy.

The following example requests the information about the [edit system login] level of
the current candidate configuration:

<rpC>
<get-configuration>
<configuration>
<system>
<login/>
</system>
</configuration>
</get-configuration>
</rpc>

For more information about router configuration, see “Router Configuration” on
page 39. For a summary of the available configuration tags, see the JUNOScript API
Reference.

Start, Control, and End a JUNOScript Session

Although operational and configuration requests conceptually belong to
separate classes, a JUNOScript session does not have distinct modes that
correspond to CLI operational and configuration modes. Each request tag is
Note enclosgd within its own <rpc> tag, so a client application can freely alternate
operational and configuration requests.
The client application can send only one request tag at a time to a particular
router, and must not send another request tag until it receives the closing
</rpc-reply> tag that represents the end of the JUNOScript server response to
the current request.

Include A ttributes in the Opening <<rpc=T ag

Optionally, a client application can include one or more attributes in the opening <rpc> tag
for each request. The client application can freely define attribute names. The JUNOScript
server echoes each attribute, unchanged, in the opening <rpc-reply> tag in which it encloses
its response. You can use this feature to associate requests and responses by defining an
attribute in each opening request tag that assigns a unique identifier. The JUNOScript server
echoes the attribute in its opening <rpc-reply> tag, making it easy to map the response to the
initiating request.

Parse the JUNOScript Server Response
The JUNOScript server encloses its response to a client request in <rpc-reply> tags. Client
applications must include code for parsing the stream of response tags coming from the
JUNOScript server, either processing them as they arrive or storing them until the response is
complete. See the following sections for further information:

JUNOScript Server Response Classes on page 27

Use a Standard API to Parse Response Tags on page 29

JUNOScript Serv er Response Classes
There are three classes of JUNOScript server responses:

Operational responses —Responses to requests for information about router status.
These correspond to the output from JUNOS CLI operational commands as described in
the JUNOS Internet Softw are Oper ational Mode Command R eference. The JUNOScript
API defines response tags for all defined JUNOScript operational request tags.

For example, the JUNOScript server returns the information requested by the
<get-interface-information> tag in a response tag called <interface-information>, and the
information requested by the <get-chassis-inventory> tag in a response tag called
<chassis-inventory>.

JUNOScript Session Control e

Start, Control, and End a JUNOScript Session

@ JUNOScript 5.4 API Guide

The opening tag for an operational response usually includes the xmins attribute to
define the XML namespace for the enclosed tags that do not have a prefix (such as
junos:) before their names. The namespace is a URL of the form
http://xml.juniper.net/junos/release-code/junos-category, where release-code is the
standard string that represents the release of the JUNOS Internet software that is
running on the JUNOScript server machine, and category represents the type of
information.

The following sample response includes information about the interface called
ge-2/3/0. The namespace indicated by the xmIns attribute contains interface
information for the initial release of version 5.3 of the JUNOS Internet software. (Note
that the opening <interface-information> tag appears on two lines only for legibility.)

<rpc-reply>
<interface-information xmins="http://xml.juniper.net/junos/5.3R1/junos-interface">
<physical-interface>
<name>ge-2/3/0</name>
<!-- other data tags for the ge-2/3/0 interface -->
</physical-interface>
</interface-information>
</rpc-reply>

For more information about the contents of operational response tags, see “Operational
Requests” on page 35. For a summary of operational response tags, see the JUNOScript
API Reference.

Configur ation information r esponses —Responses to requests for information about the
router’s current configuration. The JUNOScript API defines a tag for every container and
leaf statement in the JUNOS configuration hierarchy.

The following sample response includes the information at the [edit system login] level
of the configuration hierarchy. For brevity, the sample shows only one user defined at
this level.

<rpc-reply>
<configuration>
<system>
<login>
<user>
<name>admin</name>
<full-name>Administrator</full-name>
<!-- other data tags for the admin user -->
</user>
</login>
</system>
</configuration>
</rpc-reply>

For more information about router configuration, see “Router Configuration” on
page 39. For a summary of the available configuration tags, see the JUNOScript API
Reference.

Start, Control, and End a JUNOScript Session

Configur ation change responses— Responses to requests to change router configuration.
In this case, the JUNOScript server indicates success by returning an opening <rpc-reply>
and closing </rpc-reply> tag with nothing between them. It does not emit another tag
that explicitly signals successful completion of the request.

For more information about router configuration, see “Router Configuration” on
page 39. For a summary of the available configuration tags, see the JUNOScript API
Reference.

For an example of parsing the <rpc-reply> tag in the context of a complete JUNOScript
session, see “Example of a JUNOScript Session” on page 31.

Use a Standard API to Parse Response Tags

Client applications can handle incoming XML tags by feeding them to a parser that
implements a standard API such as the Document Object Model (DOM) or Simple API for
XML (SAX).

Routines in the DOM accept incoming XML and build a tag hierarchy in the client
application’s memory. There are also DOM routines for manipulating an existing hierarchy.
DOM implementations are available for several programming languages, including C, C+-,
Perl, and Java. The DOM specification is available at
http://www.w3.0rg/TR/REC-DOM-Level-1. Additional information is available at
http://search.cpan.org/doc/TIMATHER/XML-DOM-1.37/lib/XML/DOM.pm (part of the
Comprehensive Perl Archive Network [CPAN] Web site).

URL) is subject to frequent revision. Try substituting higher version numbers

@ The version indicator in the URL for the DOM.pm file (1.37 in the preceding
if the file cannot be found.

One potential drawback with DOM is that it always builds a hierarchy of tags and data, which
can become very large. If a client application needs to handle only a subhierarchy at a time,
it can use a parser that implements SAX instead. SAX accepts XML and feeds the tags and
data directly to the client application, which must build its own tag hierarchy. For more
information about SAX, see http://sax.sourceforge.net.

End the Session and Close the Connection

When a client application is finished making requests, it ends the JUNOScript session by
emitting the empty <request-end-session/> tag within <rpc> tags. In response, the
JUNOScript server emits the <end-session/> tag enclosed in <rpc-reply> tags. The client
application waits to receive this reply before emitting its closing </junoscript> tag. For an
example of the exchange of closing tags, see “Example of a JUNOScript Session” on page 31.

The client application can then close the ssh, SSL, or other connection to the JUNOScript
server machine. Client applications written in Perl can close the JUNOScript session and
connection by using the JUNOScript Perl module described in “Write a Perl Client
Application” on page 71. For more information, see that chapter.

Client applications that do not use the JUNOScript Perl module use the routine provided for
closing a connection in the standard library for their programming language.

JUNOScript Session Control @

Handle an Err or Condition

Handle an Error Condition

Halt a Request

@ JUNOScript 5.4 API Guide

If the JUNOScript server encounters an error condition that prevents it from processing the
current request, it emits an <xnm:error> tag, which encloses child tags that describe the
nature of the error. Client applications must be prepared to receive and handle an
<xnm:error> tag at any time. The information in any response tags already received that are
related to the current request might be incomplete. The client application can include logic
for deciding whether to discard or retain the information.

An error can occur while the server is performing any of the following operations, and the
server can send a different combination of child tags in each case:

Processing a request submitted by a client application in a defined request tag

Processing a command string submitted by a client application in a <command> tag
(discussed in “Requests and Responses without Defined JUNOScript Tags” on page 37)

Opening, locking, committing, or closing a configuration as requested by a client
application (discussed in “Router Configuration” on page 39)

Parsing a configuration file submitted by a client application in a <load-configuration>
tag (discussed in “Change the Candidate Configuration” on page 55)

If the JUNOScript server encounters a less serious problem, it can emit an <xnm:warning> tag
instead. The usual response for the client application in this case is to log the warning or pass
it to the user, but to continue parsing the server’s response.

For a description of the child tags that can appear within an <xnm:error> or <xnm:warning>
tag to specify the nature of the problem, see the entries for <xnm:error> and <xnm:warning>
in the JUNOScript API R eference.

To request that the JUNOScript server stop processing the current request, emit the empty
<abort/> tag. The JUNOScript server responds with the empty <abort-acknowledgment/>
tag. Depending on the operation being performed, response tags already sent by the
JUNOScript server for the halted request are possibly invalid. The client application can
include logic for deciding whether to discard or retain them as appropriate.

For more information about the <abort/> and <abort-acknowledgment/> tags, see their
entries in the JUNOScript API R eference.

Display CLI Output as JUNOScript Tags

Display CLI Output as JUNOScript Tags

To display the output from a JUNOS CLI command as JUNOScript tags rather than the default
formatted ASCII, pipe the command to the display xml command. The following example
shows the output from the show chassis hardware command issued on an M40 Internet
backbone router that is running the initial version of JUNOS Release 5.3:

user@host> show chassis hardware | display xml
<rpc-reply>

<chassis-inventory xmins="http://xml.juniper.net/junos/5.3R1/junos-chassis">
<chassis junos:style="inventory">
<name>Chassis</name>
<serial-number>00118</serial-number>
<description>M40</description>
<chassis-module>

<name>Backplane</name>

<version>REV 06</version>
<part-number>710-000073</part-number>
<serial-number>AA2049</serial-number>
</chassis-module>

<chassis-module>

<name>Power Supply A</name>

</chassis-module>

</chassis>
</chassis-inventory>
</rpc-reply>

Example of a JUNOScript Session

This section describes the sequence of tags in a sample JUNOScript session. The client
application begins by establishing a connection to a JUNOScript server.

The two parties then exchange initialization Pls and tags, as shown in the following example.
Note that the JUNOScript server’s <junoscript> tag appears on multiple lines for legibility
only. The server does not actually insert a newline character into the list of attributes. For a
detailed discussion of the <?xmlI?> Pl and <junoscript> tag, see “Start the JUNOScript
Session” on page 21.

Client Application JUNOScript Server

<?xml version="1.0" encoding="us-ascii"?> <?xml version="1.0" encoding="us-ascii"'?>

<junoscript version="1.0" release="5.3R1"> <junoscript version="1.0" hostname="router1"
0s="JUNOS" release="5.3R1"
xmlns="URL" xmlIns:junos="URL"
xmins:xnm="URL">

T1001

JUNOScript Session Control @

Example of a JUNOScript Session

@ JUNOScript 5.4 API Guide

The client application now emits the <get-chassis-inventory> tag to request information
about the router’s chassis hardware. The JUNOScript server returns the requested
information in the <chassis-inventory> tag. In the following example, tags appear indented
and on separate lines for legibility only. Client applications do not need to include newlines,
spaces, or other white space characters in the tag stream they send to the JUNOScript server,
because the server automatically discards such characters. Also, client applications can issue
all tags that constitute a request within a single routine such as the C-language write()
routine, or can invoke a separate routine for each tag or group of tags.

Client Application JUNOScript Server
<|‘pC>

<get-chassis-inventory>

<detail/>

</get-chassis-inventory>

</rpc>
<rpc-reply>
<chassis-inventory xmins="URL">
<chassis>

<name>Chassis</name>
<serial-number>1122</serial-number>
<description>M10</description>
<chassis-module>
<name>Midplane</name>
<!- - other child tags for the Midplane chassis module - ->
</chassis-module>
<!- - tags for other chassis modules - ->
</chassis>
</chassis-inventory>
</rpc-reply>

T1002

The client application then prepares to create a new privilege class called network-mgmt at
the [edit system login class] level of the configuration hierarchy. It begins by using the
<lock-configuration/> tag to prevent any other users or applications from altering the
candidate configuration at the same time. To confirm that the candidate configuration is
locked, the JUNOScript server returns an <rpc-reply> and an </rpc-reply> tag with nothing
between them.

Client Application JUNOScript Server
<rpc>

<lock-configuration/>
</rpc>

T1003

<rpc-reply></rpc-reply>

Example of a JUNOScript Session

The client application emits the tags that define the new network-mgmt privilege class,
commits them, and unlocks (and by implication closes) the configuration. As when it opens
the configuration, the JUNOScript server confirms successful receipt, commitment, and
closure of the configuration only by returning an opening <rpc-reply> and closing
</rpc-reply> tag with nothing between them, not with a more explicit signal. (You do not
need to understand the meaning of all tags at this point. For more information about
configuring a router, see “Router Configuration” on page 39.)

Client Application
<rpC>
<load-configuration>
<configuration>
<system>
<login>
<class>

JUNOScript Server

<name>network-mgmt</name>
<permissions>configure</permissions>
<permissions>snmp</permissions>
<permissions>system</permissions>

</class>
</login>
</system>
</configuration>
</load-configuration>
</rpc>

<|’pC>
<commit-configuration/>
</rpc>

<rpC>
<unlock-configuration/>
</rpc>

<rpc-reply></rpc-reply>

<rpc-reply></rpc-reply>

T1004

<rpc-reply></rpc-reply>

The client application closes the JUNOScript session:

Client Application
<rpc>

<request-end-session/>
</rpc>

</junoscript>

JUNOScript Server

<rpc-reply>
<end-session/>
</rpc-reply>

T1005

</junoscript>

JUNOScript Session Control @

Example of a JUNOScript Session

@ JUNOScript 5.4 API Guide

	JUNOScript Session Control
	General JUNOScript Conventions
	Ordering and Context for Session Control Tags
	Ordering and Context for Request and Response Tags
	Ordering and Context for a Request Tag’s Child Tags
	Ordering and Context for a Response Tag’s Child Tags
	Spaces, Newlines, and Other White Space Characters
	Comments
	XML Processing Instructions
	Predefined Entity References

	Start, Control, and End a JUNOScript Session
	Supported Access Protocols
	Prerequisites for Establishing a Connection
	Connect to the JUNOScript Server
	Start the JUNOScript Session
	Exchange Tagged Data
	End the Session and Close the Connection

	Handle an Error Condition
	Halt a Request
	Display CLI Output as JUNOScript Tags
	Example of a JUNOScript Session

